Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes
نویسنده
چکیده
Dramatically improving the performance of fuel cell systems with their complex heterogeneous structures involving electrocatalysts, proton conducting membrane, reactant, and interfaces between them requires understanding the fundamental chemical, electrochemical, and physical phenomena at the heart of these complex materials and relating these fundamentals to the properties and performance of the membrane–electrode assembly. Our goal is to develop a predictive model that can be used to estimate the changes in performance upon changes in the design and which can be used to monitor performance of working fuel cells. Our strategy is to start with first principles quantum mechanics (QM) and to develop overlapping simulation methodologies in which QM is used to train a reactive force field that can be applied for large-scale (millions of atom) molecular dynamics simulations while retaining the accuracy of QM. The results of molecular dynamics are used to extract a coarse grain or mesoscale description useful in modeling properties at much larger scales. This model would enable the conception, synthesis, fabrication, characterization, and development of advanced materials and structures for fuel cells and for the associated hydrocarbon fuel reformers in an overall fuel cell system. We illustrate here some of the progress toward this goal.
منابع مشابه
Thermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles
This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-mo...
متن کاملMulti-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State
The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...
متن کاملOn-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System
This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC) generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO) D...
متن کاملA Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application
This paper presents a novel multi-port DC/DC converter which is suitable to be used as the interface of hybrid renewable energy systems. The converter contains three unidirectional power flow ports which two of them are input ports and are connected to two independent energy sources while the third one is the output port that feeds a standalone load. Furthermore, the proposed converter contains...
متن کاملEffect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005